

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND **INNOVATIVE RESEARCH (JETIR)**

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Softly ii-normal spaces

Department of Mathematics

Bhopal Singh Sharma and Jitendra Kumar

jkr85775@gmail.com and

N.R.E.C. College, Khurja -203131(U.P.) India and S.S.M.V. (P.G.) College Shikarpur-

203395

Abstract: In this paper, we establish and study a new class of softly normal called softly iinormal spaces. The relationships among normal, ii-normal and Int-normal spaces are investigated. Moreover, we established some functions related with softly ii-normal spaces and obtain some preservation theorems of softly ii-normal spaces.

Keywords: ii-open, softly ii-normal, normal spaces.

2010 AMS Subject Classification: 54D15.

1. Introduction

In 1937, Stone [4] established the concept of regular-open sets. In 2019, Mohammed and Abdullah. [1] established the concepts of ii-open, i-open sets and obtained their properties. In 2020, Hamant Kumar [3] established the concepts of ii-normal spaces and its properties.

2. Preliminaries

2.1 Definition. A subset A of a topological space X is said to be

1. regular open [4] if A = int(cl(A)).

2. **INT-open** [1] if

(a) $G \neq \phi$, X.

(b)
$$INT(A) = G$$

3. **ii-open** [1] set if there exist an open set G belongs to τ , such that

(a) $G \neq \phi$. X

(b) $A \subset cl(A \cap G)$

(c) INT(A) = G.

4. The complement of regular open (resp. **ii-open**) set is said to be **regular closed** (resp. **ii-closed**). The intersection of all ii-closed sets containing A is called the **ii-closure of A** and denoted **ii-cl**(A). The union of all ii-open subsets of X which are contained in A is called the **ii-interior of A** and denoted by **ii-int**(A).

The family of all regular open (resp. regular closed, ii-open, ii-closed, int-open, int-closed) sets of a space X is denoted by R-O(X) (resp. R-C(X), ii-O(X), ii-O(X), int-O(X), int-C(X))). We have the following implications for the properties of subsets :

open \Rightarrow ii-open \Rightarrow int-open

Where none of the implications is reversible as can be seen from the following examples.

2.2. Example. Let $X = \{p, q, r, s\}$ and $\mathfrak{Z} = \{X, \phi, \{q, s\}, \{p, q, s\}, \{q, r, s\}\}$. Then

1) closed sets in X are X, ϕ , {p}, {r}, {p, r}.

2) int-open sets in X are ϕ , X, {p}, {q}, {p, q}, {p, q, r} {p, q, s}.

2.3. Example. Let $X = \{p, q, r, s\}$ and $\Im = \{\phi, \{p\}, \{r\}, \{p, q\}, \{p, r\}, \{p, q, r\}, X\}$. Then

1) closed sets in X are X, ϕ , {s}, {q, s}, {r, s}, {p, r, s}, {q, r, s}.

2) Int-closed sets in X are X, ϕ , {p}, {q}, {r}, {s}, {p, q}, {p, r}, {p, s}, {q, r}, {q, s}, {p, q, s}, {q, r, s}.

2.4. Example. Let $X = \{p, q, r\}$ and $\Im = \{X, \phi, \{p\}, \{q\}, \{p, q\}\}$. Then

1) closed sets in X are X, ϕ , {r}, {p, r}, {q, r}.

2) ii-open sets in X are ϕ , X, {p}, {q}, {p, q}, {p, r} {q, s}.

3. Softly ii-Normal Spaces

3.1. Definition. A topological space X is said to be **softly ii-normal** if for every pair of disjoint closed subsets H and K, one of which is π -closed and the other is regular closed, there exist disjoint ii-open sets U, V of X such that H \subset U and K \subset V.

3.2. Definition. A topological space X is said to be **int-normal** [2] if for every pair of disjoint closed subsets H, K of X, there exist disjoint INT-open sets U, V of X such that $H \subset U$ and K $\subset V$.

3.3. Definition. A topological space X is said to be **ii-normal** [3] if for every pair of disjoint closed subsets H, K of X, there exist disjoint ii-open sets U, V of X such that $H \subset U$ and $K \subset V$.

3.4. Definition. A topological space X is said to be **softly int-normal** if for every pair of disjoint closed subsets H and K, one of which is π -closed and the other is regular closed, there exist disjoint int-open sets U, V of X such that H \subset U and K \subset V.

3.4. Remark.

By the definitions and examples stated above, we have the following diagram:

softly normal \Rightarrow softly ii-normal \Rightarrow softly int-normal

3.5. Example. Let $X = \{p, q, r, s\}$ and $\mathfrak{Z} = \{\tau, \{p\}, \{q\}, \{r\}, \{p, q\}, \{p, r\}, \{q, r\}, \{p, q, r\}, \{p, q, r\}, \{p, q, s\}, X\}$. The pair of disjoint closed subsets of X are $A = \{r\}$ and $B = \{s\}$. Also $U = \{q, r\}$ and $V = \{p, s\}$ are disjoint int-open sets such that $A \subset U$ and $B \subset V$. Hence X is softly int-normal but not normal.

3.6. Example. Let $X = \{p, q, r, s\}$ and $\Im = \{\phi, \{r\}, \{s\}, \{q, r\}, \{r, s\}, \{p, r, s\}, \{q, r, s\}, X\}$. The pair of disjoint closed subsets of X are $A = \{p\}$ and $B = \{q\}$. Also $U = \{p, r\}$ and $V = \{q, s\}$ are disjoint int- open sets such that $A \subset U$ and $B \subset V$. Hence X is softly int-normal but neither softly normal nor normal.

3.7. Example. Let $X = \{p, q, r, s\}$ and $\Im = \{\phi, \{q\}, \{s\}, \{q, s\}, \{p, q, s\}, \{q, r, s\}, X\}$. The pair of disjoint closed subsets of X are $A = \{p\}$ and $B = \{r\}$. Also $U = \{p, s\}$ and $V = \{q, r\}$ are disjoint int-open sets such that $A \subset U$ and $B \subset V$. Hence X is int-normal but not normal. Since U and V are not open.

3.8. Example. Let $X = \{p, q, r, s\}$ and $\mathfrak{Z} = \{\phi, \{p\}, \{q, r, s\}, X\}$. The pair of disjoint closed subsets of X are $A = \{p\}$ and $B = \{q, r, s\}$. Also $U = \{p\}$ and $V = \{q, r, s\}$ are disjoint ii-open sets such that $A \subset U$ and $B \subset V$. Hence X is softly normal as well as softly ii-normal. Since U and V both are open sets.

3.8. Theorem. For a topological space X, the following are equivalent:

(1) X is softly ii-normal.

(2) For each π -closed set G and each regularly open set H with G \subset H,

(3) There exist an ii-open set U s. t. $G \subset U \subset ii-cl(U) \subset H$. For each regularly closed set G and each π -open set H with $G \subset H$, there exist an int-open set U s. t. $G \subset U \subset ii-cl(U) \subset H$. (4) For any pair possessing of disjoint closed set G and H, one of which is π -closed and the other is regularly closed, there exist ii-open sets U and V s. t. $G \subset U$ and $H \subset V$ and also intcl(U) \cap ii-cl(V) = ϕ .

Proof: (1) \Rightarrow (2).

Suppose (1). Let G and H are any pair of disjoint closed sets one of which is π -closed and the other is regularly open s. t. G \subset H. Then G \cap (X – H) = ϕ where (X – H) is regularly closed. Then there exist disjoint ii-open sets U, V s. t. G \subset U and (X – H) \subset V. Because U \cap V = ϕ , then ii-cl(U) \cap V = ϕ . So ii-cl(U) \subset (X – V) \subset (X – (X – H) = H. Hence G \subset U \subset ii-cl(U) \subset H.

 $(2) \Longrightarrow (3).$

Suppose (2).

Consider G is any regularly closed set and H is any π -open set s. t. $G \subset H$. Then $(X - H) \subset (X - G)$, where (X - H) is π -closed and (X - G) is regularly open. Therefore by (2), there exist an ii-open set M s. t. $(X - H) \subset M \subset ii$ -cl $(M) \subset (X - G)$. So $G \subset (X - ii$ -cl $(M)) \subset (X - M) \subset H$. Therefore, we suppose U = (X - ii-cl(M)), which is int-open and since $M \subset ii$ -cl(M), then (x - ii-cl $(M)) \subset (X - M)$. Therefore $U \subset (X - M)$, thus ii-cl $(U) \subset ii$ -cl $(X - M) = (X - M) \subset H$.

 $(3) \Longrightarrow (4).$

Suppose (3).

Consider G and H are any regular closed and π -closed set with $G \cap H = \phi$. Then $G \subset (X - H)$ where (X - H) is π -open. By (3), there exists an ii-open set U s. t. $A \subset U \subset ii$ -cl(U) $\subset (X - H)$. But ii-cl(U) is ii-closed, using (3), again we have an int-open set M such that $G \subset U \subset ii$ -cl(U) $\subset M \subset ii$ -cl(M) $\subset (X - H)$. Suppose (X - ii-cl(M)), then V is ii-open set and $H \subset V$. We get (X - ii-cl(M)) $\subset (X - M)$, so $V \subset (X - M)$, therefore ii-cl(V) \subset ii-cl(X - M) = (X - M). Then we get ii-cl(U) $\subset M$ and ii-cl(V) $\subset (X - M)$. So ii-cl(U) \cap ii-cl(V) = ϕ .

(4) \Rightarrow (1) is obvious.

3.9. Theorem. For a topological space X, the following are equivalent :

(1) X is softly ii-normal.

(2) For any pair of open sets A and B, one of which is π -open and the other is regular open their union is X, there exist an ii-closed sets U, V such that A \subset U and B \subset V and U union V = X.

(3) For each π -closed set G and each regular open set H consisting G, there is an ii-open set V such that $G \subset V \subset ii$ -cl(V) \subset H.

Proof. (1) \Rightarrow (2), (2) \Rightarrow (3), (3) \Rightarrow (1).

(1) \Rightarrow (2). Suppose A, B are π -open and regular open sets respectively in a softly ii-normal space X such that A union B = X. Then X – A and X – B are π - closed and regular closed sets of X with (X – A) \cap (X – B) = ϕ . By softly ii-normal of X, there exist disjoint ii-open sets A₁, B₁ such that X – A \subset A₁ and X – B \subset B₁. Suppose U = X – A₁ and V = X – B₁. Then U and V are ii-closed sets such that U \subset A, V \subset B and U union V = X.

 $(2) \Rightarrow (3)$ and $(3) \Rightarrow (1)$ are clear. By using previous theorem (3.8), this is easy to produce the following theorem, which is a Urysohns lemma version to softly ii-normal. A proof can be introduced by a similar manner of the normal case.

3.10. Theorem. A topological space X is soft ii-normality iff for each pair of disjoint closed sets G and H of which is π -closed and the other is regularly closed, there exist a continuous function g on X into [a, b], with its usual topology, s. t. g(G) = {a} and g(H) = {b}. As above this can be see that the inverse image of a π -closed set under an open continuous function is π -closed and the inverse image of a regularly closed set under an open continuous function is regularly closed.

3.11. Theorem. Suppose X is a soft ii-normality and $g : X \to Y$ is an open continuous one-one function. Then g(X) is a soft ii-normality.

Proof: Suppose G be any π -closed subset in g(X) and consider H be any regularly closed subset in g(X) s. t. G \cap H = ϕ . Then g⁻¹ (G) is a π -closed set in X, which is disjoint from the regularly closed set g⁻¹ (H). Because X is softly ii-normal, there are two disjoint open sets S and T s. t. g⁻¹ (G) \subset S and g⁻¹(H) \subset T. Because g is injective and open. Hence the result follows. **Corollary:** Softly ii-normal space is a topological property.

3.12. Lemma: Suppose N be a closed domain subspace of a topological space X. If G be an iiopen set in X, then $G \cap N$ is ii-open set in N.

3.13. Theorem. A closed domain subspace of a soft ii-normality is soft ii-normality.

Proof: Suppose N be a closed domain subspace of a soft ii-normality X. Suppose G, H be any disjoint closed sets in N s. t. G and H are regularly closed and π -closed respectively. Then G and H are disjoint closed sets in X such that G is regularly closed and H is π -closed in X. By softly ii-normal space of X, there exist disjoint ii-open sets S and T of X such that G \subset S and H \subset T. By using the **Lemma (3.12)**, we get S \cap N, T \cap N are disjoint ii-open sets in N such that G \subset S \cap N and H \subset T \cap N. Therefore, N is softly ii-normal subspace. Because each closed and open (clopen) subset is a closed domain, then we get the following corollary. **Corollary:** Softly ii-normal space is a hereditary under the clopen subspaces.

REFERENCES

1.Amir Mohammed and Beyda Abdullah, ii-open sets in topological spaces, International Mathematical Forum, Vol. 14, (2019), 41-48.

2. Bhopal Singh Sharma and Anuj Kumar, Int-normal spaces in topological spaces,

International Journal of Mathematics Trends and Technology (IJMTT), Vol. 66, (2020), 67-70.

3. Hamant Kumar, ii-normal spaces in topological spaces, *Journal of Emerging Technologies* and *Innovative Research (JETIR)*, **7**(2020), no.8, 1510-1520.

4. M. H. Stone, Applications of the theory of Boolean rings to general topology. Trans. Amer. Math. Soc. **41**(1937), 375-381.